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J. Phys. A: Math. Gen. 19 (1986) L1067-L1072. Printed in Great Britain 

LEITER TO THE EDITOR 

Accuracy loss of action invariance in adiabatic change of a 
one-freedom Hamiltonian 

J H Hannay 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK 

Received 4 August 1986 

Abstract. The action in a one-freedom Hamiltonian system is well known to be invariant 
under adiabatic change of the Hamiltonian with very small error, provided the frequency 
of the motion does not vanish. But the frequency can generically vanish: a potential barrier 
can pass through the energy of the particle. The error incurred in this case has a universal 
form which is calculated. 

If a particle is moving in a one-dimensional potential well it follows a contour of 
constant energy in phase space. If the potential is changed infinitely slowly to a new 
one, the contours change shape. But since work is done on the particle it does not, 
finally, follow that contour with the same energy as initially, but rather that with the 
same area, or action, as initially. This is the well known adiabatic invariant of integrable 
systems (Arnold 1978) and it continues to hold approximately provided the timescale 
of the change is much greater than the period of oscillation. In fact the error is 
exponentially small in this ratio if the change is a smooth one (Landau and Lifshitz 
1969). 

Loss of accuracy may be expected, though, if the change in the potential is such 
as to take the frequency of oscillation to zero. This happens generically when a potential 
barrier passes through the energy of the particle. The process and the consequent loss 
of accuracy incurred is described below. 

Figure 1 shows the instantaneous action S of a particle (that is the area of the 
Hamiltonian contour it lies on) as the potential it is moving in is very slowly changed. 
The potential is a symmetric one-dimensional double well whose central barrier is 
slowly lowered so that the particle escapes from the right-hand well to move in both 
wells. In phase space the separatrix of the Hamiltonian (the contour through the 
barrier peak) shrinks through the orbit of the particle. Its action, for one half, not 
both, is shown by a broken line. The action of the particle makes its largest jump at 
the transition through the separatrix, where it collects the area of the left-hand lobe, 
and is therefore doubled, approximately. The question is, how approximately (exact 
doubling not being counted as accuracy lost). 

Both before and after the transition the motion divides into alternating ‘sweeps’ 
and ‘creeps’. The sweeps are fast traversals of one or other lobe of the separatrix with 
the orbit hugging it closely. The creeps are slow passages through the central hyperbolic 
region, corresponding to reflection from, or passage over, the barrier. During the 
creeps the action of the particle parallels that of the separatrix, because its contour 
keeps hugging the separatrix (except in the immediate hyperbolic neighbourhood). 
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Figure 1. Instantaneous action S of a particle as the potential it moves in is slowly changed. 

The creep lines on the graph are twice as steep after the transition as before because 
the contour then encloses both of the separatrix lobes. During the sweeps the action 
changes for another reason (they are too fast for the separatrix action to change 
appreciably). Work is done on the particle so that it returns to the hyperbolic region 
for its next creep on a higher energy contour with, therefore, a different area (figure 2). 

The relation between the energy and the area takes a universal form when, as we 
assume throughout, the energy is close enough to the barrier top energy. In fact it is 

+ 

Figure 2. Successive creep contours and their energies. 
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convenient to take the latter as the zero of energy so that the wells are rising rather 
than the barrier falling. Then the energy H of a particle is constant during a creep 
and the difference between its contour area and the separatrix area can be written 

A = -TH(ln(Hl/h - 1) (1) 

where 7 is the characteristic time of the hyperbolic point (a local feature) and h is a 
constant determined by the gradient of the Hamiltonian around the entire lobe (a 
global feature). 

The duration of a creep is the derivative of A with respect to H :  

-T InlHl/h (2) 
which is large close to the transition when IHI is small and diminishes as lHI grows. 
( /HI is necessarily much less than h for the formula to be applicable.) 

Although the particle’s action continues to oscillate long after (and long before) 
the transition, its mean final value Sf is well defined and expressible in terms of its 
mean initial value Si as follows. Pick a particular ‘initial’ sweep i, long before the 
transition, and a ‘final’ one f long after. Denote the separatrix area (one lobe thereof) 
at these instants by Yi and .9, and its constant rate of change by 9 (negative in value). 
With Ai- and Ai+ as the area difference (1) during the creeps immediately before and 
after sweep i, and similarly for A,- and A,+, we have 

Sf = 2.9, + ;( A,+ + A/- )  

= 2Yi + 2 9  c - T In ( H l / h  +;(A,+ + A/-) 

= 2 s i + 2 9 Z - 7  In I H ~ / ~ + ~ ( A / + + A , - ) - ( A ~ + + A ~ _ )  (3) 
where the summation runs over all creep energies between sweep i and sweep f: 

The final fact that allows explicit evaluation of Sf is that the work done on the 
particle in each sweep is the same, its value being simply -9. (This follows from the 
equality of the integrals ( d H / d t  dt  and JaS/at  d8/27r around the lobe, 8 being the 
angle variable.) So the creep energies are an equally spaced ladder of steps which the 
particle climbs (figure 2): 

H = ISl(n + x)  for integer n (4) 

where the only freedom is the overall shift x. This is the ‘random’ variable associated 
with the exact phase of oscillation that the particle has at the critical moment. If i 
and f are sufficiently early and late respectively then x is uniformly distributed on the 
range 0-1. 

Using the following identity (the derivative of the identity is well known and the 
integral of each side from x = 0-1 is equal to zero as N + CO): 

N 

N-CC 0 
lim In( n + x)  -f{( N + x)[ln( N + x)  - 11 + ( N  + x + l)[!n( N + x + I )  - 11) 

= -In r(x)/Jz-;; ( 5 )  

we obtain, by separating the sum in (3) into a pre- and post-transition sum and 
substituting for the A from (l) ,  

Sf = 2si - 2 l 9 1 ~ [ 1 n ( ~ ( x ) / J )  - ( f - x )  In IsPI/h] 

= 2si + 21,917 ln(2 sin TX) 

- 2 ( 9 1 7 [ l n ( ~ ( l - x ) / ~ ) - ( - t + x )  In (sPI/h] 

(independent of the constant h ) .  (6) 
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Since x is distributed on the interval 0-1, the distribution (figure 3) of the final action 
Sr is straightforwardly shown to be 

(7) 
1 

TIPIT 
P ( S , )  =- (exp(-AS/I9l.r) - l)-"* 

where 

A s  = sf- 2si - ~ 1 9 ) ~  (AS CO).  (8) 

(The average value of A S  is, from (7) ,  - T ~ ~ ~ P I T ,  which means the average value of Sf 
is just 2Si as would be expected.) 

For the reverse process of capture of the particle by one side or the other as the 
wells become deeper, the expressions analogous to (3) are 

sr = y; + ;( A,, + A,-) = sq + 9 C +$(A,+ + A ~ - )  0 
= $[Si -$(Ai+ + Ai-)] + .!? C +$(A,+ + A,-) 0 
=$Si+p C +;(A,++A/-)-$(Ai++Ai-) 0 

P ( S f ) = m  2 (exp(-AS/(.!?lT)- 

so that the action change is 

sf= $si - / gPJ~ ln (2  sin T X )  

and its distribution is 

Figure 3. Final action as a function of the 'random' variable x and its consequent distri- 
bution. 
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The generalisation to asymmetric wells is straightforward. The most obvious difference 
is that the escaping particle collects an action from the left-hand separatrix lobe which 
has no relation to the right-hand lobe area. Let the area of the left lobe when the right 
one has an area equal to the initial particle action Si be 9;. Another important 
difference is that the constant rates of change 9' and 9 need no longer be equal, 
though both should be considered negative as before. The energy changes during the 
sweeps after the transition therefore alternate between -p and -9'. This alternation 
shows up in the action graph as alternating large kicks and small ones. Finally the 
constant h now takes a different value h' and h' for left and right lobes. We will use 
the fact that the area between the separatrix and an exterior contour of energy H is 
the same as the sum of the two areas between the contours of energy -H and their 
separatrix lobes. Thus 

A=-TH(ln lHl/h'-l)-TH(ln lHl/h'-l) (13) 

-7 ln ( lHl /v 'Z) .  (14) 

after the transition. The creep duration is the derivative of this divided by two: 

Thus we have 

Sf = 9;+ 9>+ +(Af+ + A,-) 

= si -$ (A~+ + A,-) + Y;-+(A,+ + A ~ - ) ~ I / P +  (9' + 9) ++(A,+ + A,-) 0 
1 ,  

= Si+ Yb+ (1 + p'/Sip') +A,-)) h' 

The final step is to split the 'post' sum into two parts corresponding to up creeps (e.g. 
5 in figure 2) and down creeps (e.g. 4 and 6 in figure 2), each of which has a uniformly 
spaced ladder of energies with spacing 19+p'l. It is easy to check that the term 
f(A,++A,-) can be replaced (with vanishing error) by terms for the ups and downs 
separately. Thus we obtain 

Sf = Si + 9'; + ( 1 + PI/ 9) Is'l T [  In r ( x r ) / d %  - ( f - x') In I prI/ h '3 
+ Igr+ p'IT[ln T ( x " ) / d % -  (i- x " ) h  lpr+ p'l/(hrh')' '2] 
+ 19 + PlT[ln r( xd)/JZ?; - (f - xd) In 19 + 

up creep energies: / 9 ' + 9 ' l ( n + x " )  

down creep energies: (p'+ 9'1( n + xd) (17) 

  VI')''^] (16) 

where xr, xu, xd are the 'phases' of the three energy ladders (figure 4), i.e, 

right creep energies: -lprl(n +x'). 

Between the completion of this letter and its submission, I learned of other simultaneous 
work on this problem (Tennyson et a1 1986a, b). 
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P '4 
Figure 4. Energy ladder for asymmetric well. 

I am grateful to M Robnik for posing this problem and for his work towards solving 
it. 
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